
Drawing graphs withNEATO

Stephen C. North

April 10, 2002

Abstract

NEATO is a program that makes layouts of undirected graphs following the
filter model ofDOT. Its layout heuristic creates virtual physical models and
runs an iterative solver to find low energy configurations. The intended appli-
cations are in telecommunication networks, computer programming and soft-
ware engineering. Here is an example layout depicting an entity-relationship
database schema. It took 0.01 seconds of user time to generate on a garden
variety PC running Linux.

Entity Relation Diagram
drawn by NEATO

course

name

code
C-I n

S-C

n
institute

name
1

S-I

1

student

name

grade

number

mn

1

NEATO User’s Manual, April 10, 2002 2

1 Introduction

NEATO is a utility that draws undirected graphs, which are common in telecommu-
nications and computer programming. It draws a graph by constructing a virtual
physical model and running an iterative solver to find a low-energy configuration.
Following an approach proposed by Kamada and Kawai [KK89], an ideal spring
is placed between every pair of nodes such that its length is set to the shortest path
distance between the endpoints. The springs push the nodes so their geometric dis-
tance in the layout approximates their path distance in the graph. This often yields
reasonable layouts [Ead84][FR91]. (In statistics, this algorithm is also known as
multidimensional scaling. Its application to graph drawing was noted by Kruskal
and Seery in the late 1970s.)

NEATO is compatible with the directed graph drawing programDOT in shar-
ing the same input file format and graphics drivers [KN91]. Since the file format
includes both undirected and directed graphs,NEATO draws graphs prepared for
DOT, and vice versa. Both programs have the same options for setting labels, col-
ors, shapes, text fonts, and pagination, and for generating code in common graph-
ics languages (PostScript, raster formats such as GIF and PNG, SVG, FrameMaker
MIF, HPGL/2, and web click maps). Both work withDOTTY, an interactive graph
viewer for X windows. (Thelneato command script runs neato from an interac-
tive window.)

Figs. 1–4 are representative examples ofNEATO’s output. The timings refer to
user time on a 600 Mhz Pentium Linux server. Fig. 1 was derived from a hand-
made drawing in an operating system tutorial. Fig. 2 shows the connectivity of a
computer network. Fig. 3 shows the sharing of programmer-defined types between
procedures in a C program. The program that was the source of this graph parses a
text file into an internal data structure. The graph was extracted from a C program
database. Its drawing shows where interactions or conversions between types may
occur. Finally, Fig. 4 shows relationships between IMRs (modification requests)
in an externally released software product.1 The labeled nodes are IMRs and the
small circles encode many-to-many dependencies.

1Graph courtesy of J. Hoshen, Bell Labs.

NEATO User’s Manual, April 10, 2002 3

graph G {
run -- intr;
intr -- runbl;
runbl -- run;
run -- kernel;
kernel -- zombie;
kernel -- sleep;
kernel -- runmem;
sleep -- swap;
swap -- runswap;
runswap -- new;
runswap -- runmem;
new -- runmem;
sleep -- runmem;

}

run

intr

runbl

kernel

zombie

sleep runmem

swap runswap

new

Figure 1: Process States in an Operating System Kernel (0.03 seconds)

ALC

MV

MH

AN

HO3

HO1CB

HR

HV

IH1

IHCIHP

IW

IH2

IH4

MT

WH1

DR

ER

FJ

MLM

LZ

FL

ERC

Figure 2: R&D Internet Backbone (0.08 seconds)

NEATO User’s Manual, April 10, 2002 4

check_buffer

main

out_heading

prefix

info

rel

out_rel

out_data

check_fopen

check_fclose

fill_spec_table

match

open_source

spec_heading

spec_data

init_spec_table

Figure 3: Type Sharing Between Procedures in a C Program (0.41 seconds)

NEATO User’s Manual, April 10, 2002 5

Figure 4: IMR Dependencies (6.75 seconds)

NEATO User’s Manual, April 10, 2002 6

$ cat example.dot
graph G {

n0 -- n1 -- n2 -- n3 -- n0;
}
$ neato -Tps example.dot -o example.ps

n0

n1

n3

n2

Figure 5: Example Graph Drawing

2 Graph Drawing

2.1 Basic Commands

The remainder of this memo gives a synopsis ofNEATO features. Many of these
should be familiar to users ofDOT. Fig. 5 shows a graph file, its drawing, and the
command that was executed. A graph file has a short header and a body consisting
of nodes, edges, and attribute assignments. By default, nodes are drawn as ellipses
labeled with node names. Undirected edges are created by the-- operator. Edges
are drawn as straight lines and tend to be all about the same length.

2.2 Drawing Options

Table 1 lists the graph, node and edge attributes that affect the layout. The options
to set labels, shapes, fonts, and sizes are convenient for many kinds of layouts. The
drawing in figure 6 illustrates some of these features.2 Options to set the size of the
drawing, pagination, and output graphics language are also the same as inDOT.

3 Adjusting Layouts

Although layouts made byNEATO are close to a local optimum as defined by the
forces the springs exert on the nodes, fine tuning or generation of alternative layouts
may improve readability. BecauseNEATO uses unconstrained optimization, it does
not enforce minimum separation constraints between nodes or between edges and

2Graph courtesy of Hector Zamora, DEFINITY.

NEATO User’s Manual, April 10, 2002 7

A1

A2

A

l #6

A3

l #7l #8

B

l #1

C
l #2

D

l #3

E

l #4

F

l #5 l #1

l #2

l #3

l #1

l #1

graph G {
node [shape=box,style=filled];
{node [width=.3,height=.3,shape=octagon,style=filled,color=skyblue] A1 A2 A3}
A -- A1 [label="l #6"];
A -- A2 [label="l #7"];
A -- A3 [label="l #8"];

{edge [style=invis]; A1 -- A2 -- A3}

edge [len=3]; /* applies to all following edges */
A -- B [label="l #1"]; A -- C [label="l #2"]; A -- D [label="l #3"];
A -- E [label="l #4"]; A -- F [label="l #5"]; B -- C [label="l #1"];
B -- E [label="l #2"]; B -- F [label="l #3"]; C -- D [label="l #1"];
D -- E [label="l #1"];

}

Figure 6: Node and Edge Options

NEATO User’s Manual, April 10, 2002 8

nonadjacent nodes, so in dense graphs nodes and edges can be too close or overlap.
There are three ways of trying to correct these errors:

1) change the initial configuration
2) adjust the solver parameters
3) edit the input edge lengths and weights.

3.1 Initial Configuration

If no options are given,NEATO always makes the same drawing of a given graph
file, because its initial node placement and the solver are deterministic. Random
initial placement can yield different layouts. It is sometimes reasonable to make
at least several different trial layouts, and accept the best one. Random initial
placement is requested by setting the value of the graph attributestart . If the
value is a number, it is taken as a seed for the random number generator. The layout
is different for each seed, but still deterministic. If the value is not a number, the
process ID or current time is used. Each run potentially yields a different drawing.
For example:

$ neato -Tps -Gstart=rand file.dot > file.ps

3.2 Termination Threshold

The solver is a Newton-Raphson algorithm that moves a node with a maximalδe on
every iteration. The solver terminates whenδe falls below someε. The default (.1)
is low enough that the layout is usually close to a local minimum, but not so low
that the solver runs for a long time without making significant progress. Smaller
values ofε allow the solver run longer and potentially give better layouts. Larger
values can decreaseNEATO’s running time but with a reduction in layout quality.
This may be a desirable tradeoff for large graphs.ε is set in the graph’sepsilon
variable. You can also directly limit the number of iterations. It is convenient to do
this on the command line:

$ neato -Tps -Gepsilon=.001 small.dot -o small.ps
$ neato -Tps -Gepsilon=1.5 big.dot -o big.ps
$ neato -Tps -Gmaxiter=1000 big.dot -o big.ps

3.3 Edge Lengths and Weights

Since the layout depends on the input edge lengths and their weights, these can
sometimes be adjusted to good effect. The length of an edge is the preferred dis-
tance between the endpoint nodes. Its weight is the strength of the corresponding

NEATO User’s Manual, April 10, 2002 9

graph G {
n0 -- n1 [len=2, style=bold];
n1 -- n2 -- n3 -- n0;

}

n0

n1

n3

n2

Figure 7: Example graph with an edge stretched

graph G {
n0 [pos = "0,0!"];
n1 [pos = "2,0"];
n2 [pos = "2,2!"];
n0 -- n1 -- n2 -- n3 -- n0;

}

n0

n1

n3

n2

Figure 8: Example graph with nodes pinned

spring, and affects the cost if it is stretched or compressed. Invisible edges can also
be inserted to adjust node placement. In figure 6, the length of some edges was set
to 3 to make them longer than the default. Also, the two invisible edges affect A1,
A2, and A3.

There is also a way to also give the initial or final coordinates of individual
nodes. The initial position, formatted as two comma-separated numbers, is entered
in a node’spos attribute. If! is given as a suffix, the node is also pinned down.

4 Eliminating Overlaps

To improve clarity, it is sometimes helpful to eliminate overlapping nodes or edges.
One way to eliminate node overlaps is just to scale up the layout (in terms of the

NEATO User’s Manual, April 10, 2002 10

Name Default Values
Node Attributes

shape ellipse ellipse , box , circle , doublecircle , diamond ,
plaintext , record , polygon

height ,width .5,.75 height and width in inches
label node name any string
fontsize 14 point size of label
fontname Times-Roman font family name, e.g.Courier, Helvetica
fontcolor black type face color
style graphics options, e.g.bold, dotted, filled
color black node shape color
pos initial coordinates (append! to pin node)

Edge Attributes
weight 1.0 strength of edge spring
label label, if not empty
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
style graphics options, e.g.bold, dotted, dashed
color black edge stroke color
len 1.0 preferred length of edge
dir none forward , back , both , or none
decorate if set, draws a line connecting labels with their edges
id optional value to distinguish multiple edges

Graph Attributes
start seed for random number generator
size drawing bounding box, in inches
page unit of pagination,e.g.8.5,11
margin .5,.5 margin included inpage
label caption for graph drawing
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
orientation portrait may be set tolandscape
center when set, centers drawing onpage
overlap true may be set tofalse or scale
spline false true makes edge splines if nodes don’t overlap
sep 0 edge spline separation factor from nodes - try .1

Table 1: Drawing attributes

NEATO User’s Manual, April 10, 2002 11

center points of the nodes) as much as needed. This is enabled by setting the graph
attributeoverlap=scale . This transformation preserves the overall geometric
relationships in the layout, but in bad cases can require high scale factors. Another
way to eliminate node overlaps employs an interative heuristic. On each iteration,
a bounded Voronoi diagram of the node center points is computed, and each node
is moved to the center of its Voronoi cell. This is repeated until all overlaps are
eliminated. A side-effect (perhaps unwanted) is that the adjusted layout tends to
fill the bounding rectangle of the Voronoi diagram. The heuristic is activated by
settingoverlap=false .

Edge overlaps (with nodes) can be prevented by drawning them with spline
curves (withspline=true). Note that the spline drawing heuristic is expensive
and probably should not be attempted on graphs that have more than a few dozen
nodes.

Areas for future work include non-rectangular Voronoi boundaries, faster edge
routing heuristics, and techniques to prevent unnecessary edge intersections.

5 Acknowledgments

NEATO’s layout heuristic follows the work of Kamada and Kawai [KK89]. The im-
plementation was originally part of theSALEM 3D viewer for mathematical struc-
tures written with David Dobkin and Nathaniel Thurston. In convertingNEATO to
a more traditional tool, the graphics code generator was borrowed fromDOT. This
includes code contributed by John Ellson and Emden Gansner. Steve Eick was an
early user and offered some good suggestions about ways to adjust layouts. Emden
Gansner also contributed the heuristics for eliminating node overlaps, based on a
paper by David Rappaport and Kelly Lyons.

References

[Ead84] Peter Eades. A Heuristic for Graph Drawing. InCongressus Numerantium, vol-
ume 42, pages 149–160, 1984.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-
directed Placement.Software– Practice and Experience, 21(11):1129–1164,
November 1991.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, April 1989.

[KN91] Eleftherios Koutsofios and Stephen North. Drawing graphs withdot. Tech-
nical Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ,
September 1991.

